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Filter Generator

A filter generator over F2 is a stream cipher in perhaps its simplest form,
with a well-defined mathematical description:

it consists of a sequence generator (e.g. LFSR) and a Boolean
function f , which work together to produce as output a binary string
(keystream) based on the state of the register.
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Filter Generator Security

The security of filter generators is highly reliant on both the properties of
the sequence-generator, as well as the properties of the Boolean function.

For instance, based on the algebraic normal form of a Boolean
function, related properties such as algebraic immunity, algebraic
degree, nonlinearity and correlation immunity, can be computed to
derive some of the cipher’s security.

Likewise, we know that the Hamming weight of a characteristic
polynomial should not be low in order to resist correlation attacks.

And to resist inversion attacks, the positions of the cipher’s LFSR
which a Boolean function taps from, should satisfy additional
requirements.

However, the two components are usually analysed separately.
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Filter Generator Security

Perhaps this form of analysis has its limitations:

For example, in algebraic attacks, one collects polynomials arising
from the cipher output.

Analysis (solving) estimates then consider this set as a random set
of polynomials.

However, it has been shown that this set is very structured: for every
monomial, the sequence of coefficients has a minimal polynomial
which can be derived from the LFSR and the Boolean function
[RH07].
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Stream Cipher Equivalence

We consider (nonlinear) equivalence of LFSR-based stream ciphers using
basic properties of Galois fields.

We thus construct isomorphism classes of stream ciphers.

The topic has been studied before in the context of block ciphers
(e.g. [BB02], [MR02]).

In our case, we show however that several important cryptographic
properties, such as nonlinearity and algebraic immunity, are not
invariant with respect to such equivalence classes.
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Stream Cipher Equivalence

Our Conclusions:

analysis of both the generator and the corresponding Boolean
function should be combined when assessing the security of a filter
generator.

furthermore, any cryptographic property should be defined with
respect to the weakest equivalent cipher.

however this seems very hard for filter generators used in practice,
since the class of equivalent ciphers is very large in these cases.
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Linear Feedback Shift Register

Let s be the output of LFSR L over F2, with (primitive) characteristic
polynomial c(x) of degree n.
Let α ∈ F2n be a root of c(x).

Then s may be written over F2n in terms of the roots of c(x) as

st = Tr(Xαt) =
n−1∑
i=0

(Xαt)2i

, t = 0, 1, 2, . . . ,

where the 2n − 1 nonzero choices of X ∈ F∗2n result in 2n − 1 distinct
shifts of the same m-sequence s.

Remark: α is a generator of F∗2n . If β is another generator, we will use
the mapping α 7→ β to define another sequence generator.
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Example

Let n = 5, q = 2n = 32 and let F2(α) ' F32, where

mα(x) = x5 + x4 + x3 + x2 + 1 ∈ F2[x ]

is a primitive polynomial.
An m-sequence s can be generated as

st = Tr(Xαt), t = 0, 1, 2, . . . ,

where X ∈ F∗32.

Now let β = α21 and X 21 = Y ∈ F2(β). It follows that

Tr(Xαt) = Tr((Y βt)3), t = 0, 1, 2, . . . ,

since 3 · 21 ≡ 1 (mod 31).
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Example (cont.)

We can use the LFSR with characteristic polynomial mβ(x) to generate
the sequence s.

However we need to combine its state in a non-linear way.

The corresponding sequence generator over F2(β) is given by

st = f (bt , bt+1, . . . , bt+4), t = 0, 1, 2, . . . ,

where

(bt , bt+1, . . . , bt+4) = (Tr(Y βt),Tr(Y βt+1), . . . ,Tr(Y βt+4)),

and

f (x0, x1, x2, x3, x4) = x0x2 + x2x3 + x1x4 + x2x4 + x1 + x3.

The two filter generators (one of them is linear) will generate
identical sequences for all possible initial states X and Y = X 21,
and they are thus equivalent sequence generators.
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Equivalence of Filter Generators

The basic idea: let α, β be generators of F∗2n :

α α2 α3 α4 α5 α6 . . . α2n−2 α2n−1

↓ ↓ ↓ ↓ ↓ ↓
... ↓ ↓

f (α) f (α2) f (α3) f (α4) f (α5) f (α6) . . . f (α2n−2) f (α2n−1)

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
... ⇓ ⇓

0 0 1 0 1 1 · · · 0 1

⇑ ⇑ ⇑ ⇑ ⇑ ⇑
... ⇑ ⇓

g(β) g(β2) g(β3) g(β4) g(β5) g(β6) . . . g(β2n−2) g(β2n−1)

↑ ↑ ↑ ↑ ↑ ↑
... ↑ ↑

β β2 β3 β4 β5 β6 . . . β2n−2 β2n−1

Note that the truth table is not complete: we do not have the image of
0 ∈ F2n . Thus there are equivalent functions f , g which could also be
used.
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Equivalence - definitions

Definition

For a sequence s ∈ Fq−1
2 and β ∈ F∗q, let

Vβ(s) = {f ∈ Bn | s ∈ Lβ(f )}.

We can consider Vβ(s) as the set of all filter generators with
characteristic polynomial gβ(x) that generate s as its first q − 1 terms.

Definition

Let s ∈ Fq−1
2 be a sequence with period e dividing q− 1, where e is not a

divisor of 2k − 1, with 0 < k < n. Then let

Gn(s) = {Vβ(s) |β ∈ Fq, e | ord(β)}.

In other words, the set Gn(s) may be viewed as a class of filter generators
of length n that generate s as a keystream.
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Number of Equivalent Filter Generators

Lemma

Let s ∈ Fq−1
2 denote a periodic sequence with e = per(s) and β ∈ F∗q

where per(s) | ord(β). Then

|Vβ(s)| ≤ e(q − 1)

ord(β)
· 2q−ord(β).

In the case of more interest (ord(β) = q − 1): we have equality and there
are 2 elements in Vβ(s) (except for affine equivalence).

Theorem

If s ∈ Fq−1
2 has period q − 1, then

|Gn(s)| = φ(q − 1)/n,

where φ(q − 1) is the number of generators of F∗q.
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Another Example I

Consider the binary sequence

s = (1011111101000100110001010110001),

of length 31.

There are φ(31)/5 = 6 primitive polynomials over F2 of degree 5.
For each (distinct) generator β of the multiplicative group of F(α), we
compute a function fβ such that s ∈ Lβ(fβ), where we let
gα = x5 + x2 + 1.
The distinct nonzero coset-leaders modulo 31 are K = {1, 3, 5, 7, 11, 15},
and thus we may compute six functions fαk

, k ∈ K , where we let αk = αk

and pick one function fαk
from each class Vαk

∈ G5(s).
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and thus we may compute six functions fαk

, k ∈ K , where we let αk = αk

and pick one function fαk
from each class Vαk

∈ G5(s).
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Another Example II

We have 6 functions fαk
∈ Vαk

(s) ∈ G5(s), k ∈ K :

fα1 = x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x1x2x3x4 + x0x1x2 + x0x1x3 +

x0x2x3 + x1x2x3 + x0x1x4 + x2x3x4 + x0x2 + x0 + x1

fα3 = x0x1x2x3 + x0x1x3x4 + x1x2x3x4 + x0x1x2 + x0x1x4 + x0x3x4 +

x1x3x4 + x2x3x4 + x0x1 + x1x3 + x2x4 + x2 + x3

fα5 = x0x1x2x4 + x0x2x3x4 + x1x2x3x4 + x0x1x2 + x0x1x3 + x0x2x3 +

x1x2x3 + x0x1x4 + x0x3x4 + x0x2 + x0x4 + x1x4 + x2x4 + x0 +

x1 + x2 + x3 + x4

fα7 = x0x1x3 + x0x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x0x3 +

x0x4 + x1x4 + x3x4 + x0 + x3

fα11 = x0x1x2 + x0x2x3 + x1x2x3 + x0x1x4 + x1x2x4 + x0x1 + x0x2 +

x1x3 + x0x4 + x2

fα15 = x0x1 + x1x2 + x1x3 + x0x4 + x1x4 + x2x4 + x3x4 + x0 + x1 + x3
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Another Example III

The columns of the table below are ordered by the 6 functions
fαk
∈ Vαk

(s) ∈ G5(s), k ∈ K :

fα1 fα3 fα5 fα7 fα11 fα15

n 5 5 5 5 5 5
d 4 4 4 3 3 2
wH 16 16 16 16 16 16
NL 10 10 10 8 12 8
AI 2 3 2 2 3 2
CI 0 0 0 1 0 1

Note that, apart from the weight of the truth-tables and the number of
variables, none of the other properties remain the same with respect to
the transformations.
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Cryptanalytic Implications

If we restrict ourselves to keystream-sequences of period q − 1 = 2n − 1,
which is the common case for sequences generated by filter generators,
then there are 2 · |Gn(s)| isomorphic filter generators generating the same
keystream sequence(s), excluding affine equivalence.

Thus, in order to assess the cryptographic properties of a filter generator,
one should in theory check whether there exist in this class weak
isomorphic ciphers with respect to some cryptographic property.
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Cryptanalytic Implications

In particular, any cryptographic property should be defined with respect
to the weakest cipher in the equivalence class.

Definition

Let P be a cryptographic measurement of a filter generator S, which
generates a sequence s. Then the filter generator S is said to be
P-resistant only if there is no isomorphic filter generator S ′ with
measurement P ′ < P.

We discuss in the paper a few concepts (e.g. Algebraic Immunity), but
do not extend the analysis.
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Cryptanalytic Implications

The bad news: at this stage, this is likely to have limited application in
practice.

for sizes used in practice, the number of elements in the equivalence
classes is huge.

filtering functions are likely to be hard to describe (very dense with
many variables).

Areas for further research include:

studying classes of Boolean functions which are equivalent with
respect to both nonlinear and linear equivalence.

generalising the idea, and defining equivalence with respect to the
set of all possible combiner-generators generating a periodic
sequence.
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Conclusions

Given a LFSR-based stream cipher S generating a sequence s, we showed
how to define an equivalence class Gn(s), consisting of all filter
generators of length n that produce s as output (and in most cases of
interest, of all filter generators equivalent to S).

Somewhat surprisingly, several properties of cryptographic relevance
are not invariant among the elements of Gn(s).

Thus, we feel that a security analysis is incomplete without
considering the elements in Gn(s).

For example, one should not reach conclusions of the security
properties of a filter generator by, for instance, analysing the algebraic
degree or algebraic immunity of the corresponding Boolean function,
or the properties such as the weight of the polynomial defining the
LFSR, or by the position of the registers that are tapped as input to
the Boolean function.

Sondre Rønjom and Carlos Cid — Nonlinear Equivalence of Stream Ciphers 19/20



Introduction LFSR Equivalence of Filter Generators Conclusions

Conclusions

Given a LFSR-based stream cipher S generating a sequence s, we showed
how to define an equivalence class Gn(s), consisting of all filter
generators of length n that produce s as output (and in most cases of
interest, of all filter generators equivalent to S).

Somewhat surprisingly, several properties of cryptographic relevance
are not invariant among the elements of Gn(s).

Thus, we feel that a security analysis is incomplete without
considering the elements in Gn(s).

For example, one should not reach conclusions of the security
properties of a filter generator by, for instance, analysing the algebraic
degree or algebraic immunity of the corresponding Boolean function,
or the properties such as the weight of the polynomial defining the
LFSR, or by the position of the registers that are tapped as input to
the Boolean function.

Sondre Rønjom and Carlos Cid — Nonlinear Equivalence of Stream Ciphers 19/20



Introduction LFSR Equivalence of Filter Generators Conclusions

Conclusions

Given a LFSR-based stream cipher S generating a sequence s, we showed
how to define an equivalence class Gn(s), consisting of all filter
generators of length n that produce s as output (and in most cases of
interest, of all filter generators equivalent to S).

Somewhat surprisingly, several properties of cryptographic relevance
are not invariant among the elements of Gn(s).

Thus, we feel that a security analysis is incomplete without
considering the elements in Gn(s).

For example, one should not reach conclusions of the security
properties of a filter generator by, for instance, analysing the algebraic
degree or algebraic immunity of the corresponding Boolean function,
or the properties such as the weight of the polynomial defining the
LFSR, or by the position of the registers that are tapped as input to
the Boolean function.

Sondre Rønjom and Carlos Cid — Nonlinear Equivalence of Stream Ciphers 19/20



Introduction LFSR Equivalence of Filter Generators Conclusions

Conclusions

In particular, our analysis makes it clear that one should not generally
analyse the components of a stream cipher separately, as it is usual in
practice.

As a result, the natural object of analysis seems to be the equivalence
class Gn(s). The bad news is that this is likely to be hard in practice.

More research is required...

Thank you!
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